For a typical continuous function f on $[0,1]$, f has an I-essential derived number at each point $x \in (0,1)$.

Zajíček proved [3] that, for a typical continuous real-valued function f and each $x \in (0,1)$, there exists $y \in \mathbb{R}$ which is an essential derived number of f at x. In this paper we shall prove that this theorem remains true if we replace the notion of an essential derived number of f at x by an analogous notion for the Baire category.

Let C denote the set of continuous real valued functions defined on $[0,1]$ furnished with the metric of uniform convergence. When we say a typical $f \in C$ has a certain property \mathcal{P}, we shall mean that the set of $f \in C$ with this property is residual in C.

The notation used throughout this paper is standard. In particular, \mathbb{R} stands for the set of real numbers, $\mathbb{R} = \mathbb{R} \cup \{-\infty, \infty\}$, I for the σ-ideal of sets of the first category, $\|f\|$ for the norm in C, $B(f,r)$ for the open ball in C with centre f and radius r and χ_A for the characteristic function of a set A.

Definition 1. ([1]) We say that $x_0 \in \mathbb{R}$ is an upper I-density point of a set A having the Baire property if and only if there exists an increasing sequence of real numbers $\{t_n\}_{n \in \mathbb{N}}$ tending to infinity, such
that

\[\chi_{t_n(E-x_0) \cap (-1,1)} \rightarrow 1 \text{ with respect to } I \text{ as } n \to \infty \text{ on } (-1,1) \]

(see [2] for the definition of the convergence with respect to \(I \)). We shall use the notation \(d_I(E, x_0) = 1 \).

Observe that \(x_0 \) is an upper \(I \)-density point of a set \(A \) if and only if \(0 \) is an upper \(I \)-density point of \(A - x_0 = \{x - x_0 : x \in A\} \).

It is easy to see that \(d_I(E, x_0) = 1 \) if and only if there exists an increasing sequence of real numbers \(\{t_n\}_{n \in \mathbb{N}} \) tending to infinity, such that

\[\lim_{n \to \infty} \chi_{t_n(E-x_0) \cap (-1,1)}(x) = 1 \]

\(I \)-a.e. on \((-1,1)\).

Definition 2. We say that \(y \) is an \(I \)-essential derived number of \(f \) at \(x \) if there exists a set \(E \subset \mathcal{R} \) having the Baire property, such that \(d_I(E, x) = 1 \) and \(\lim_{t \to x, t \in E} \frac{f(t) - f(x)}{t - x} = y \).

Theorem. For a typical \(f \in \mathcal{C} \) and each \(x \in (0,1) \), there exists \(y \in \mathcal{R} \) which is an \(I \)-essential derived number of \(f \) at \(x \).

Proof. Let \(\{P_k\}_{k \in \mathbb{N}} \) be a sequence of polynomials which is dense in \(\mathcal{C} \). For each \(k \in \mathbb{N} \), put \(M_k = \|P_k''\| = \sup_{x \in [0,1]} |P_k''(x)| \) and choose \(\delta_k \) such that \(0 < \delta_k < (kM_k)^{-1} \) and \(\delta_k \downarrow 0 \) as \(k \to \infty \). Let

\[G = \bigcap_{m=1}^{\infty} \bigcup_{k=m}^{\infty} B\left(P_k, \frac{\delta_k}{4k^2}\right) = \limsup_k B\left(P_k, \frac{\delta_k}{4k^2}\right). \]

For each \(m \in \mathbb{N} \), the set \(\bigcup_{k=m}^{\infty} B(P_k, \frac{\delta_k}{4k^2}) \) is open and dense, so \(G \) is a dense \(G_\delta \)-subset of \(\mathcal{C} \). Hence \(G \) is residual in \(\mathcal{C} \). Choose an arbitrary \(f \in G \). It is sufficient to prove that, for each \(x \in (0,1) \), there exists an \(I \)-essential derived number of \(f \) at \(x \). Fix \(x_0 \in (0,1) \). Since \(f \in G \), we can choose an increasing sequence of positive integers \(\{k_n\}_{n \in \mathbb{N}} \) such that \(f \in B(P_{k_n}, \delta_{k_n} \cdot (4k_n^2)^{-1}) \) for each \(n \in \mathbb{N} \). Let \(h_n = \delta_{k_n} \), \(A_n = P_k(x_0) \), \(z_n = (k_n)^{-1} \). Since \(\delta_n \downarrow 0 \) as \(n \to \infty \), we have \(h_n \downarrow 0 \) for \(n \to \infty \). For \(n \) large enough, we get \((x_0 - h_n, x_0 + h_n) \subset (0,1) \). We
shall show that, for such an n and for $x \in (x_0 - h_n, x_0 - h_n(k_n)^{-1}) \cup (x_0 + h_n(k_n)^{-1}, x_0 + h_n)$, we have

$$\left| \frac{f(x) - f(x_0)}{x - x_0} - A_n \right| < z_n.$$

We can assume that $x \in (x_0 + \frac{h_n}{k_n}, x_0 + h_n)$ (the other case is analogous). We have

$$\left| \frac{f(x) - f(x_0)}{x - x_0} - \frac{P_{kn}(x) - P_{kn}(x_0)}{x - x_0} \right| < \left| \frac{f(x) - P_{kn}(x)}{x - x_0} \right| + \left| \frac{f(x_0) - P_{kn}(x_0)}{x - x_0} \right|$$

(1)

$$< \frac{2\delta_{kn}(4k_n^2)^{-1}}{\delta_{kn}(k_n)^{-1}} = \frac{1}{2k_n}.$$

By the Taylor formula, for some $\xi \in (0, 1)$,

$$\left| \frac{P_{kn}(x) - P_{kn}(x_0)}{x - x_0} - P_{kn}'(x_0) \right| = \left| \frac{1}{2} P_{kn}''(\xi)(x - x_0) \right|$$

(2)

$$< \frac{1}{2} M_{kn} \delta_{kn} < \frac{1}{2} M_{kn} \cdot \frac{1}{k_n M_{kn}}$$

$$= \frac{1}{2k_n}.$$

From (1) and (2) we obtain

$$\left| \frac{f(x) - f(x_0)}{x - x_0} - P_{kn}'(x_0) \right| < \frac{1}{k_n},$$

hence

(3)

$$\left| \frac{f(x) - f(x_0)}{x - x_0} - A_n \right| < z_n$$

for $x \in (x_0 - h_n, x_0 - h_n(k_n)^{-1}) \cup (x_0 + h_n(k_n)^{-1}, x_0 + h_n)$.
Denote by \(y \in \mathbb{R} \) a cluster point of a sequence \(\{A_n\}_{n \in \mathbb{N}} \). Then there exists a subsequence \(\{n_p\}_{p \in \mathbb{N}} \) of the sequence of positive integers, such that \(A_{n_p} \to y \) as \(p \to \infty \). Define

\[
E = \bigcup_{p=1}^{\infty} \left[\left(x_0 - \frac{h_{n_p}}{k_{n_p}}, x_0 - \frac{h_{n_p}}{k_{n_p}} \right) \cup \left(x_0 + \frac{h_{n_p}}{k_{n_p}}, x_0 + h_{n_p} \right) \right].
\]

We shall show that

\[
\bar{d}_f(E, x_0) = 1 \quad \text{and} \quad \lim_{x \to \infty} \frac{f(x) - f(x_0)}{x - x_0} = y.
\]

According to the above remarks, it is sufficient to show that there exists a sequence of real numbers \(\{t_n\}_{n \in \mathbb{N}} \) tending to infinity, such that

\[
\lim_{n \to \infty} \chi_{t_n(E-x_0) \cap (-1,1)}(x) = \chi(-1,1)(x)
\]

I-a.e. on \((-1,1)\). Let \(t_p = (h_{n_p})^{-1} \). Then

\[
t_p \cdot (E - x_0) \supset t_p \left[\left(-h_{n_p} - \frac{h_{n_p}}{k_{n_p}}, \frac{h_{n_p}}{k_{n_p}} \right) \cup \left(\frac{h_{n_p}}{k_{n_p}}, h_{n_p} \right) \right]
\]

\[
= \left(-1, -\frac{1}{k_{n_p}} \right) \cup \left(\frac{1}{k_{n_p}}, 1 \right).
\]

Since \(h_{n_p} \downarrow 0 \) for \(p \to \infty \) and \(k_n \not\to \infty \) for \(n \to \infty \), we have \(t_p / \to \infty \) as \(p \to \infty \) and \(1/k_{n_1} \downarrow 0 \) as \(l \to \infty \). Hence, for \(x \in (0,1) \), \(x \neq 0 \), there exists \(p_0 \) such that, for each \(p \geq p_0 \),

\[
x \in \left(-1, -\frac{1}{k_{n_p}} \right) \cup \left(\frac{1}{k_{n_p}}, 1 \right).
\]

Then

\[
x \in t_p \cdot \left[\left(-h_{n_p} - \frac{h_{n_p}}{k_{n_p}}, \frac{h_{n_p}}{k_{n_p}} \right) \cup \left(\frac{h_{n_p}}{k_{n_p}}, h_{n_p} \right) \right] \subset t_p \cdot (E - x_0),
\]

so, for \(p \geq p_0 \), we have

\[
\chi_{t_p(E-x_0) \cap (-1,1)}(x) = 1.
\]
Therefore \(\tilde{d}_f(E, x_0) = 1 \).

We only need to show that

\[
\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = y.
\]

Let \(\varepsilon > 0 \). There exists \(p_0 \) such that \(1/k_{n_p} < \varepsilon/2 \) for \(p \geq p_0 \). Then, for each \(x \in E \) such that \(|x - x_0| < h_{n_{p_0}} \), we have

\[
x \in \bigcup_{p = p_0}^{\infty} \left[\left(x_0 - h_{n_p}, x_0 - \frac{h_{n_p}}{k_{n_p}} \right) \cup \left(x_0 + \frac{h_{n_p}}{k_{n_p}}, x_0 + h_{n_p} \right) \right].
\]

From (3) it follows that there exists \(p \geq p_0 \) such that

\[
\left| \frac{f(x) - f(x_0) - A_{n_p}}{x - x_0} \right| < z_{n_p} = \frac{1}{k_{n_p}} < \frac{\varepsilon}{2}.
\]

Since \(A_{n_p} \to y \) as \(p \to \infty \), there exists \(p_1 \) such that, for \(p \geq p_1 \), we get

\[
|A_{n_p} - y| < \frac{\varepsilon}{2}.
\]

Let \(p_2 = \max(p_0, p_1) \) and \(\delta = h_{n_{p_2}} \). According to the above remarks, for \(x \in E \), if \(|x - x_0| < \delta \), then we have

\[
\left| \frac{f(x) - f(x_0) - y}{x - x_0} \right| < \varepsilon.
\]

This completes the proof.

REFERENCES

Zajićek ([3]) udowodnił, że typowa funkcja rzeczywista ma w każdym punkcie $x \in (0,1)$ istotną liczbę pochodną. W pracy tej dowodzimy, że twierdzenie to pozostaje prawdziwe, jeśli zastąpimy pojęcie istotnej liczby pochodnej przez analogiczne pojęcie dla kategorii Baire'a.

Institute of Mathematics
Łódź University
ul. Banacha 22, 90 - 238 Łódź, Poland